16 research outputs found

    Subwavelength hyperspectral THz studies of articular cartilage

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Terahertz-spectroscopy probes dynamics and spectral response of collective vibrational modes in condensed phase, which can yield insight into composition and topology. However, due to the long wavelengths employed (λ = 300 μm at 1THz), diffraction limited imaging is typically restricted to spatial resolutions around a millimeter. Here, we demonstrate a new form of subwavelength hyperspectral, polarization-resolved THz imaging which employs an optical pattern projected onto a 6 μm-thin silicon wafer to achieve near-field modulation of a co-incident THz pulse. By placing near-field scatterers, one can measure the interaction of object with the evanescent THz fields. Further, by measuring the temporal evolution of the THz field a sample's permittivity can be extracted with 65 μm spatial resolution due to the presence of evanescent fields. Here, we present the first application of this new approach to articular cartilage. We show that the THz permittivity in this material varies progressively from the superficial zone to the deep layer, and that this correlates with a change in orientation of the collagen fibrils that compose the extracellular matrix (ECM) of the tissue. Our approach enables direct interrogation of the sample's biophysical properties, in this case concerning the structure and permittivity of collagen fibrils and their anisotropic organisation in connective tissue.The research presented in this work was funded by QinetiQ & EPSRC under iCase award 12440575 and grant number EP/K041215/1

    An introduction to ghost imaging: quantum and classical

    No full text

    Subwavelength terahertz imaging of graphene photoconductivity

    No full text
    Using a spatially structured, optical pump pulse with a terahertz (THz) probe pulse, we are able to determine spatial variations of the ultrafast THz photoconductivity with subwavelength resolution (75 μm ≈ λ/5 at 0.8 THz) in a planar graphene sample. We compare our results to Raman spectroscopy and correlate the existence of the spatial inhomogeneities between the two measurements. We find a strong correlation with inhomogeneity in electron density. This demonstrates the importance of eliminating inhomogeneities in doping density during CVD growth and fabrication for photoconductive devices

    Terahertz spatial sampling with subwavelength accuracy

    No full text
    corecore